Press n or j to go to the next uncovered block, b, p or k for the previous block.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 | 1x 2640x 1320x 1x 36x 1320x 768x 768x 768x 768x 768x 768x 768x 768x 768x 768x 768x 768x 768x 12x 12x 12x 12x 12x 12x 12x 12x 12x 12x 3744x 3744x 1248x 1248x 1248x 1248x 1176x 1176x 1176x 1x | import { CPUFallbackTransform, Point2, TransformMatrix2D, } from '../../../../types'; // By Simon Sarris // Www.simonsarris.com // Sarris@acm.org // // Free to use and distribute at will // So long as you are nice to people, etc // Simple class for keeping track of the current transformation matrix // For instance: // Var t = new Transform(); // T.rotate(5); // Var m = t.m; // Ctx.setTransform(m[0], m[1], m[2], m[3], m[4], m[5]); // Is equivalent to: // Ctx.rotate(5); // But now you can retrieve it :) // Remember that this does not account for any CSS transforms applied to the canvas export class Transform implements CPUFallbackTransform { private m: TransformMatrix2D; constructor() { this.reset(); } getMatrix(): TransformMatrix2D { return this.m; } reset(): void { this.m = [1, 0, 0, 1, 0, 0]; } clone(): CPUFallbackTransform { const transform = new Transform(); transform.m[0] = this.m[0]; transform.m[1] = this.m[1]; transform.m[2] = this.m[2]; transform.m[3] = this.m[3]; transform.m[4] = this.m[4]; transform.m[5] = this.m[5]; return transform; } multiply(matrix: TransformMatrix2D): void { const m11 = this.m[0] * matrix[0] + this.m[2] * matrix[1]; const m12 = this.m[1] * matrix[0] + this.m[3] * matrix[1]; const m21 = this.m[0] * matrix[2] + this.m[2] * matrix[3]; const m22 = this.m[1] * matrix[2] + this.m[3] * matrix[3]; const dx = this.m[0] * matrix[4] + this.m[2] * matrix[5] + this.m[4]; const dy = this.m[1] * matrix[4] + this.m[3] * matrix[5] + this.m[5]; this.m[0] = m11; this.m[1] = m12; this.m[2] = m21; this.m[3] = m22; this.m[4] = dx; this.m[5] = dy; } invert(): void { const d = 1 / (this.m[0] * this.m[3] - this.m[1] * this.m[2]); const m0 = this.m[3] * d; const m1 = -this.m[1] * d; const m2 = -this.m[2] * d; const m3 = this.m[0] * d; const m4 = d * (this.m[2] * this.m[5] - this.m[3] * this.m[4]); const m5 = d * (this.m[1] * this.m[4] - this.m[0] * this.m[5]); this.m[0] = m0; this.m[1] = m1; this.m[2] = m2; this.m[3] = m3; this.m[4] = m4; this.m[5] = m5; } rotate(rad: number): void { const c = Math.cos(rad); const s = Math.sin(rad); const m11 = this.m[0] * c + this.m[2] * s; const m12 = this.m[1] * c + this.m[3] * s; const m21 = this.m[0] * -s + this.m[2] * c; const m22 = this.m[1] * -s + this.m[3] * c; this.m[0] = m11; this.m[1] = m12; this.m[2] = m21; this.m[3] = m22; } translate(x: number, y: number): void { this.m[4] += this.m[0] * x + this.m[2] * y; this.m[5] += this.m[1] * x + this.m[3] * y; } scale(sx: number, sy: number) { this.m[0] *= sx; this.m[1] *= sx; this.m[2] *= sy; this.m[3] *= sy; } transformPoint(point: Point2): Point2 { const x = point[0]; const y = point[1]; return [ x * this.m[0] + y * this.m[2] + this.m[4], x * this.m[1] + y * this.m[3] + this.m[5], ]; } } |